Permanent magnet with MgB2 bulk superconductor

نویسندگان

  • Akiyasu Yamamoto
  • Atsushi Ishihara
  • Masaru Tomita
  • Kohji Kishio
چکیده

Superconductors with persistent zero-resistance currents serve as permanent magnets for high-field applications requiring a strong and stable magnetic field, such as magnetic resonance imaging (MRI). The recent global helium shortage has quickened research into high-temperature superconductors (HTSs)—materials that can be used without conventional liquid-helium cooling to 4.2 K. Herein, we demonstrate that 40-K-class metallic HTS magnesium diboride (MgB2) makes an excellent permanent bulk magnet, maintaining 3 T at 20 K for 1 week with an extremely high stability (<0.1 ppm/h). The magnetic field trapped in this magnet is uniformly distributed, as for single-crystalline neodymium-iron-boron. Magnetic hysteresis loop of the MgB2 permanent bulk magnet was detrmined. Because MgB2 is a simple-binary-line compound that does not contain rare-earth metals, polycrystalline bulk material can be industrially fabricated at low cost and with high yield to serve as strong magnets that are compatible with conventional compact cryocoolers, making MgB2 bulks promising for the next generation of Tesla-class permanent-magnet applications.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Doping-Induced Isotopic Mg11B2 Bulk Superconductor for Fusion Application

Superconducting wires are widely used for fabricating magnetic coils in fusion reactors. Superconducting magnet system represents a key determinant of the thermal efficiency and the construction/operating costs of such a reactor. In consideration of the stability of 11B against fast neutron irradiation and its lower induced radioactivation properties, MgB2 superconductor with 11B serving as the...

متن کامل

Practical adaptation in bulk superconducting magnetic bearing applications

Lifting capacities greater than 41 N/cm2 (60 psi) at 77 K have been achieved using a combination of permanent magnets and high quality melt-textured YBa,Cu,O,-s (YBCO). The key concept of this hybrid superconducting magnetic bearing (HSMB) is the use of strong magnetic repulsion and attraction from permanent magnets to support high loads in conjunction with flux pinning in a type II superconduc...

متن کامل

Numerical study on the quench propagation in a 1.5T MgB2 MRI magnet design with varied wire compositions

To reduce the usage of liquid helium in MRI magnets, magnesium diboride (MgB2), a high temperature superconductor, has been considered for use in a design of conduction cooled MRI magnets. Compared to NbTi wires the normal zone propagation velocity (NZPV) in MgB2 is much slower leading to a higher temperature rise and the necessity of active quench protection. The temperature rise, resistive vo...

متن کامل

Modelling of bulk superconductor magnetization

This paper presents a topical review of the current state of the art in modelling the magnetization of bulk superconductors, including both (RE)BCO (where RE = rare earth or Y) and MgB2 materials. Such modelling is a powerful tool to understand the physical mechanisms of their magnetization, to assist in interpretation of experimental results, and to predict the performance of practical bulk su...

متن کامل

In situ epitaxial MgB2 thin films for superconducting electronics.

The newly discovered 39-K superconductor MgB2 holds great promise for superconducting electronics. Like the conventional superconductor Nb, MgB2 is a phonon-mediated superconductor, with a relatively long coherence length. These properties make the prospect of fabricating reproducible uniform Josephson junctions, the fundamental element of superconducting circuits, much more favourable for MgB2...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2014